Spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats.
نویسندگان
چکیده
An impairment of cardiac norepinephrine (NE) reuptake via the neuronal NE transporter (NET) enhances the effects of increased cardiac NE release in heart failure patients. Increasing evidence suggests that aldosterone and endothelins promote sympathetic overstimulation of failing hearts. Salt-sensitive Dahl rats (DS) fed a high-salt diet developed arterial hypertension and diastolic heart failure as well as elevated plasma levels of endothelin-1 and NE. Cardiac NE reuptake and NET-binding sites, as assessed by clearance of bolus-injected [(3)H]NE in isolated perfused rat hearts and [(3)H]mazindol binding, were reduced. Treatment of DS with the mineralocorticoid receptor antagonist spironolactone preserved the plasma levels of endothelin-1 and NE, cardiac NE reuptake, and myocardial NET density. Moreover, the ventricular function and survival of spironolactone-treated DS were significantly improved compared with untreated DS. The alpha(1)-inhibitor prazosin decreased blood pressure in DS similar to spironolactone treatment, but did not normalize the plasma levels of endothelin-1 and NE, NE reuptake, or ventricular function. In a heart failure-independent model, Wistar rats that were infused with aldosterone and fed a high-salt diet developed impaired cardiac NE reuptake. Treatment of these rats with the endothelin A receptor antagonist darusentan attenuated the impairment of NE reuptake. In conclusion, spironolactone preserves NET-dependent cardiac NE reuptake in salt-dependent heart failure. Evidence is provided that aldosterone inhibits NET function through an interaction with the endothelin system. Selective antagonism of the mineralocorticoid and/or the endothelin A receptor might represent therapeutic principles to prevent cardiac sympathetic overactivity in salt-dependent heart failure.
منابع مشابه
Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats.
In Dahl salt-sensitive (S) rats, high salt intake increases cerebrospinal fluid (CSF) Na(+) concentration ([Na(+)]) and blood pressure (BP). Intracerebroventricular (ICV) infusion of a mineralocorticoid receptor (MR) blocker prevents the hypertension. To assess the role of aldosterone locally produced in the brain, we evaluated the effects of chronic central blockade with the aldosterone syntha...
متن کاملAbnormal adrenal catecholamine synthesis in salt-sensitive Dahl rats.
The possible role of catecholamines in the abnormal renal response to salt loading, a genetic defect resulting in hypertension in the salt-sensitive strain of Dahl rats, was investigated by measuring the adrenal synthesis of norepinephrine, epinephrine, and dopamine as well as their content in several tissues and the urinary excretion of these catecholamines as well as some of their metabolites...
متن کاملGlucocorticoids Activate Cardiac Mineralocorticoid Receptors in Adrenalectomized Dahl Salt-sensitive Rats
We previously showed that selective mineralocorticoid receptor (MR) blockade by eplerenone is cardioprotective in Dahl salt-sensitive (DS) rats. To clarify the consequences of glucocorticoid-mediated MR activation in these animals, we investigated the effects of exogenous corticosterone on blood pressure as well as cardiac remodeling and function after adrenalectomy. DS rats were subjected to a...
متن کاملNaCl does not affect hypothalamic noradrenergic input in deoxycorticosterone acetate/NaCl and Dahl salt-sensitive rats.
Previous studies from our laboratories demonstrated that dietary NaCl supplementation in NaCl-sensitive spontaneously hypertensive rats elevates blood pressure, increases peripheral sympathetic nervous system activity, and depresses endogenous norepinephrine stores and turnover in the anterior hypothalamus. These findings suggest that reduced noradrenergic input to sympathoinhibitory neurons in...
متن کاملImpaired renal vascular reactivity in prehypertensive Dahl salt-sensitive rats.
We have previously shown that renal vascular resistance is less in Dahl salt-sensitive rats than salt-resistant rats fed 1% NaCl diets; however, renal vascular resistance increases before nonrenal vascular resistance as salt-sensitive rats develop hypertension when fed 8% NaCl diets. When salt-resistant rats are given 8% NaCl diets, renal vascular resistance decreases. The current study reports...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 147 5 شماره
صفحات -
تاریخ انتشار 2006